$title Basic GUSS Test (SCENSOL1,SEQ=407) $onText Contributor: Michael Bussieck $offText Sets i canning plants / seattle, san-diego / j markets / new-york, chicago, topeka / ; Parameters a(i) capacity of plant i in cases / seattle 350 san-diego 600 / b(j) demand at market j in cases / new-york 325 chicago 300 topeka 275 / ; Table d(i,j) distance in thousands of miles new-york chicago topeka seattle 2.5 1.7 1.8 san-diego 2.5 1.4 ; Scalar f freight in dollars per case per thousand miles /90/ ; Parameter c(i,j) transport cost in thousands of dollars per case ; c(i,j) = f * d(i,j) / 1000 ; Variables x(i,j) shipment quantities in cases z total transportation costs in thousands of dollars ; Positive Variable x ; Equations cost define objective function supply(i) observe supply limit at plant i demand(j) satisfy demand at market j ; cost .. z =e= sum((i,j), f * d(i,j) / 1000 *x(i,j)) ; supply(i) .. sum(j, x(i,j)) =l= a(i) ; demand(j) .. sum(i, x(i,j)) =g= b(j) ; Equation e dummy n row; e.. sum((i,j), x(i,j)) =n= 3; Model transport /all/ ; * The DICT set has three dimensions * 1 Model symbol * 2 Action type * 3 Update parameter * DICT needs to be specified by a data statement set dict / s.scenario . '' o. opt .srep d. param .ds a. param .as x. upper .xup f. param .fs cost.marginal.xcost x. level .xx / * Problems: * 1 QCP will not work, nor MCP, MPECS. set sX /s1*s10/; $if not set dim $set dim 1 $ifE (%dim%>3)or(%dim%<1) $abort dim must be 1 to 3 $if %dim%==1 $set s "sX" set sx #SX $if %dim%==2 $set s "sX,sX" set sx #SX:#SX $if %dim%==3 $set s "sX,sX,sX" set sx #SX:#SX:#SX Set s(%s%) /%sx%/; Parameter ds(%s%,i,j) updater for d as(%s%,i) updater for a xup(%s%,i,j) updater for x.up fs(%s%) updater for f xcost(%s%) collector for marginal of cost xx(%s%,i,j) collector for level of x $eolCom // Set ma GUSS Model Attributes / system.GUSSModelAttributes /; Parameter o(*) GUSS options / OptfileInit 0 // Read solver options for initial solve Optfile 0 // Read solver options for successive solves LogOption 0 // 0 - Moderate log (default) // 1 - Minimal log // 2 - Detailed log NoHotStart 0 // Disable hot start capability in solver that // supports hot starts NoMatchLimit 0 // Limit of unmatched scenario records (default 0) RestartType 0 // Determines restart point for the scenarios // 0 - Restart from last solution (default) // 1 - Restart from solution of base case // 2 - Restart from input point SkipBaseCase 0 // Switch for solving the base case SolveEmpty 0 // Limit of solved empty scenarios, // afterwards scenarios will be skipped (default 0) UpdateType 0 // Scenario update mechanism: // 0 - set everything to 0 and apply changes (default) // 1 - reestablish base case and apply changes // 2 - build on top of last scenario and apply changes / srep(%s%,ma) Solution attributes / #s.(ModelStat na, SolveStat na, ObjVal na) /; ds(s,i,j) = max(0,uniform(-5,2)) + eps; as(s,i) = a(i)*(1+normal(0.05,0.1)); xup(s,i,j) = uniform(120,300); fs(s) = uniform(80,100); $if set goto $goTo %goto% * Run GUSS $label scensl1 Solve transport using lp minimizing z scenario dict; * If we get a license error (global solver) just terminate if (transport.modelstat=%modelStat.licensingProblem%, abort.noerror 'too big for global solvers'); display xx, xcost; $if set goto $exit parameter repsl1(%s%,ma); repsl1(s,ma)$srep(s,ma) = srep(s,ma); repsl1(s,'objval')$(repsl1(s,'modelstat')<>1) = 0; * Check if calculated obj coincides with objval. Parameter xdiff(%s%); xdiff(s)$repsl1(s,'objval') = round(repsl1(s,'objval') - sum((i,j), fs(s) * ds(s,i,j) / 1000 *xx(s,i,j)),4); abort$card(xdiff) xdiff, repsl1, fs, ds, xx; * Now run GUSS with solvelink %solveLink.loadLibrary% $label scensl5 option solvelink=%solveLink.loadLibrary%; Solve transport using lp minimizing z scenario dict; $if set goto $exit parameter repsl5(%s%,ma); repsl5(s,ma)$srep(s,ma) = srep(s,ma); repsl5(s,'objval')$(repsl5(s,'modelstat')<>1) = 0; * Check if calculated obj coincides with objval. xdiff(s)$repsl5(s,'objval') = round(repsl5(s,'objval') - sum((i,j), fs(s) * ds(s,i,j) / 1000 *xx(s,i,j)),4); abort$card(xdiff) xdiff, repsl5, fs, ds, xx; * Run this in the traditional way: $label gams option limrow=0, limcol=0, solprint=silent; parameter repiter; loop(s, d(i,j) = ds(s,i,j); a(i) = as(s,i); x.up(i,j) = xup(s,i,j); f = fs(s); Solve transport using lp minimizing z; repiter(s,'modelstat') = transport.modelstat; repiter(s,'solvestat') = transport.solvestat; if (transport.modelstat = %modelStat.optimal%, repiter(s,'objval') = transport.objval)); $if set goto $exit parameter repdiff; alias(*,u); set ma1(ma) / modelstat, solvestat, objval /; repdiff(s,ma1) = round(repiter(s,ma1) - repsl1(s,ma1),5); abort$card(repdiff) 'iter and sl1 differ', repdiff, repiter, repsl1; repdiff(s,ma1) = round(repiter(s,ma1) - repsl5(s,ma1),5); abort$card(repdiff) 'iter and sl5 differ', repdiff, repiter, repsl5;