$title Thai Navy Problem Extended (THAIX,SEQ=105) $onText This model is an extension of the original library model THAI. Multidimensional sets (tuples and maps) are used to allow a more compact representation. MIP priorities are used to speed up the solution process. Data definitions are moved from the beginning to the end of the model definitions. Overall, the model is used to allocate ships to transport personnel from different port to a training center. Choypeng, P, Puakpong, P, and Rosenthal, R E, Optimal Ship Routing and Personnel Assignment for Naval Recruitment in Thailand. Interfaces 16, 4 (1986), 356-366. Keywords: mixed integer linear programming, routing, scheduling, naval recruitment, scenario analysis $offText Set p 'ports' / chumphon, surat, nakon, songkhla / v 'voyages' / v-01*v-15 / k 'ship classes' / small, medium, large /; Variable z(v,k) 'number of times voyage vk is used' y(v,k,p) 'number of men transported from port p via voyage vk' obj 'objective function to be minimized' voyages 'the number of voyages' shipmiles 'ship miles' manmiles 'man miles'; Integer Variable z; Positive Variable y; Equation objdef 'objective function definition' dvoyages 'definition of the number of voyages' dshipmiles 'definition of ship miles' dmanmiles 'definition of man miles' demand(p) 'pick up all the men at port p' voycap(v,k) 'observe variable capacity of voyage vk' shiplim(k) 'observe limit of class k'; Set vk(v,k) 'voyage capability' vkp(v,k,p) 'trips: voyage - ship class - port'; Parameter d(p) 'number of men at port p needing transport' shipcap(k) 'ship capacity in men' n(k) 'number of ships of class k available' dist(v) 'voyage distance'; Scalar w1 'ship assignment weight' w2 'ship distance traveled weight' w3 'personnel distance travel weight'; demand(p).. sum(vkp(vk,p), y(vkp)) =g= d(p); voycap(vk(v,k)).. sum(vkp(vk,p), y(vkp)) =l= shipcap(k)*z(vk); shiplim(k).. sum(vk(v,k), z(vk)) =l= n(k); dvoyages .. voyages =e= sum(vk, z(vk)); dshipmiles.. shipmiles =e= sum(vk(v,k), dist(v)*z(vk)); dmanmiles .. manmiles =e= sum(vkp(v,k,p), dist(v)*y(vkp)); objdef.. obj =e= w1*voyages + w2*shipmiles + w3*manmiles; Model thainavy / all /; $sTitle Data Set kp(k,p) 'port capability' / small. (chumphon) medium.(chumphon,surat,nakon) large. (chumphon,surat,nakon,songkhla) /; Parameter d(p) 'number of men at port p needing transport' / chumphon 475 surat 659 nakon 672 songkhla 1123 / shipcap(k) 'ship capacity in men' / small 100 medium 200 large 600 / n(k) 'number of ships available' / small 2 medium 3 large 4 /; Table a(v,*) 'assignment of ports to voyages' dist chumphon surat nakon songkhla v-01 370 1 v-02 460 1 v-03 600 1 v-04 750 1 v-05 515 1 1 v-06 640 1 1 v-07 810 1 1 v-08 665 1 1 v-09 665 1 1 v-10 800 1 1 v-11 720 1 1 1 v-12 860 1 1 1 v-13 840 1 1 1 v-14 865 1 1 1 v-15 920 1 1 1 1; vk(v,k) = prod(p$a(v,p), kp(k,p)); vkp(vk(v,k),p) = yes$a(v,p); dist(v) = a(v,'dist'); z.up(vk(v,k)) = n(k); z.prior(vk(v,'small')) = 3; z.prior(vk(v,'medium')) = 2; z.prior(vk(v,'large')) = 1; thainavy.priorOpt = 1; thainavy.limCol = 0; thainavy.limRow = 0; w1 = 1; w2 = 0; w3 = 0; solve thainavy minimizing obj using mip; w1 = 0; w2 = 1; w3 = 0; solve thainavy minimizing obj using mip; w1 = 0; w2 = 0; w3 = 1; solve thainavy minimizing obj using mip;