$title Robust Optimization (ROTDK,SEQ=185) $onText Robust Optimization. Laguna, M, Applying Robust Optimization to Capacity Expansion of One Location in Telecommunications with Demand Uncertainty. Management Science 44, 11 (1998), 101-110. Keywords: mixed integer linear programming, robust optimization, capacity expansion, time-dependent knapsack problem $offText Set s 'scenarios' / 1*1000 / t 'time periods' / t1*t12 / j 'components' / C001*C010 /; Alias (t,tt); Parameter di(s,t) 'increment' D(t,s) 'demand' c(j) 'capacity size' p(j) 'capacity cost' mu 'mean capacity parameter' sigma 'std capacity parameter'; mu = 100; sigma = 10; c(j) = round(uniform(1,mu)); p(j) = round(mu + c(j) + uniform(-sigma,sigma)); di(s,t)$(ord(s) <= 0.25*card(s)) = round(normal( 50,10)); di(s,t)$(ord(s) > 0.25*card(s) and ord(s) <= 0.75*card(s)) = round(normal(100,20)); di(s,t)$(ord(s) > 0.75*card(s)) = round(normal(150,40)); d(t,s) = sum(tt$(ord(tt) <= ord(t)), di(s,tt)); * display c, p, di, d; Parameter dis(t) 'discount factor' w 'shortage penalty'; dis(t) = power(.86,ord(t) - 1); w = 5; Variable x(j,t) 'expansion' z(s) 'max capacity shortage' cap(t) 'installed capacity' obj; Integer Variable x; Positive Variable z; Equation capbal(t) 'capacity balance' dembal(t,s) 'demand balance' objdef; objdef.. obj =e= sum((j,t), dis(t)*p(j)*x(j,t)) + w/card(s)*sum(s, z(s)); capbal(t).. cap(t) =e= cap(t-1) + sum(j, c(j)*x(j,t)); dembal(t,s).. cap(t) + z(s) =g= d(t,s); Model rotdk / all /; option limCol = 0, limRow = 0; solve rotdk min obj using mip;