$title Sample Data Base of the US Economy (RDATA,SEQ=38) $onText A mini relational data base of the us economy is used to demonstrate some basic concepts of the relational data model. Data verification and the use of math programming is shown as well. Kendrick, D, Chapter 3: A Relational Database of the US Economy. In Kindleberger, C P, and Ditella, G, Eds, Economics in the Long View, Essays in the Honor of W W Rostow. Macmillan, London, 1982. Keywords: mixed integer linear programming, US economy, relational data model $offText $sTitle Set Definitions Set plant / sparrows, inland, comfort, rockdale, lansing / city / sparrows-p, rockdale, p-comfort, gary, lansing / state / indiana, maryland, michigan, texas / region / e-coast, g-coast, mid-west / governor / bowen, clements, hughes, milliken / party / democrat, republican / company / us-steel, alcoa, inld-steel, gm / union / iam, ibew, ibt, uaw, usa / unit / blast-furn, steel-shop, roll-mill, alumina, aluminum, stamping, assembly / commodity / iron-ore, pig-iron, scrap-iron, steel, flat-steel, bauxite, alumina, aluminum, auto-body, automobile / process / pig-iron, steel-pig, stl-scrap, rolling, alumina, aluminum, auto-body, auto-assm / industry / steel, aluminum, automobile / sector / p-metals, transp-equ / geography(plant,city,state,region) / (sparrows.sparrows-p.maryland.e-coast inland .gary .indiana .mid-west comfort .p-comfort .texas .g-coast rockdale.rockdale .texas .g-coast lansing .lansing .michigan.mid-west) / govaff(state,governor,party) / (indiana .bowen .republican maryland.hughes .democrat michigan.milliken.republican texas .clements.republican) / ownership(company,plant) / (alcoa .(comfort,rockdale) gm .lansing inld-steel.inland us-steel .sparrows ) / sic(sector,industry,commodity) / p-metals.(steel.(iron-ore,pig-iron,steel,flat-steel,scrap-iron) aluminum.(bauxite,alumina,aluminum)) transp-equ.automobile.(auto-body,automobile) / indpl(industry,plant) 'classification of plants by industry'; $sTitle Data Table a(commodity,process) 'input-output matrix' pig-iron steel-pig stl-scrap rolling alumina aluminum auto-body auto-assm iron-ore -1. pig-iron 1. -.9 -.7 scrap-iron -.2 -.4 .2 steel 1. 1. -1.2 flat-steel 1. -1.2 bauxite -1.4 alumina 1. -1.2 aluminum 1 -.2 auto-body 1. -1. automobile 1.; Table b(unit,process) 'capacity utilization matrix' pig-iron steel-pig stl-scrap rolling alumina aluminum auto-body auto-assm blast-furn 1 steel-shop 1 1 roll-mill 1 alumina 1 aluminum 1 stamping 1 assembly 1; Table k80(unit,plant) 'capacity in 1980 (millions of units)' sparrows inland comfort rockdale lansing blast-furn 2 2.5 steel-shop 2.35 2.8 roll-mill 1.9 2.4 alumina .8 aluminum .6 .5 stamping .6 assembly .6; Table emp(plant,union) 'employment (thousands)' uaw usa ibew ibt iam sparrows 1.2 .3 .05 inland .4 comfort .7 .2 rockdale .5 .05 lansing 1.2 ; $sTitle Data Manipulations indpl(industry,plant) = yes$sum((sector,commodity,process,unit)$(sic(sector,industry,commodity) $(a(commodity,process) > 0)$b(unit,process) $k80(unit,plant)), 1); display indpl; Parameter q1(union,company) 'employment by union and company (thousands)' q2(unit,region) 'capacity by region (millions of units)' q3(governor) 'employment in steel and automobiles (thousands)' q4 'smallest number of union participation to build cars'; q1(union,company) = sum(plant$ownership(company,plant), emp(plant,union)); q2(unit,region) = sum((plant,city,state)$geography(plant,city,state,region), k80(unit,plant)); Set ind3(industry) 'industry grouping for q3' / steel, automobile /; q3(governor) = sum((state,party)$govaff(state,governor,party), sum((ind3,plant,city,region)$(geography(plant,city,state,region)*indpl(ind3,plant)), sum(union, emp(plant,union)))); display q1, q2, q3; * Query number 4 requires the solution of a mixed integer problem. Some other parameters are * are needed for the mip formulation. Parameter demand(commodity) 'in millions of units' / automobile .5 / ur(process,plant,union) 'union relationship to plant processes' mu(union) 'maximum'; Set rawmat(commodity) 'raw materials'; ur(process,plant,union) = sum(unit$k80(unit,plant), emp(plant,union)*b(unit,process)); mu(union) = sum((process,plant), ur(process,plant,union)); rawmat(commodity) = yes$(not sum(process, a(commodity,process) > 0)); rawmat("scrap-iron") = yes; display demand, ur, mu, rawmat; $sTitle Model Definiton Variable nunion 'number of unions (number)' z(process,plant) 'process level (million units)' up(union) 'union participation' u(commodity) 'purchase of raw materials (million units)'; Positive Variable z; Binary Variable up; Equation mb(commodity) 'material balance (million units)' cc(unit,plant) 'capacity constraint (million units)' ub(union) 'union balance' ud 'union definition'; mb(commodity).. sum((process,plant), a(commodity,process)*z(process,plant)) + u(commodity)$rawmat(commodity) =e= demand(commodity); cc(unit,plant).. sum(process, b(unit,process)*z(process,plant)) =l= k80(unit,plant); ub(union).. sum((process,plant), ur(process,plant,union)*z(process,plant)) =l= mu(union)*up(union); ud.. nunion =e= sum(union, up(union)); Model david / all /; solve david minimizing nunion using mip; q4 = nunion.l; display q4;