$title Social Accounting Matrix Balancing Problem (QSAMBAL,SEQ=285) $onText This is a QCP version of the gamslib model SAMBAL. A Social Accounting Matrix captures all the circular flows in an economy and is called balanced if the row totals equal the column totals. A sample problem illustrates the use of Nonlinear Programming to balance such matrices. Zenios, S A, Drud, A S, and Mulvey, J, Balancing some large Social Accounting Matrices with Nonlinear Programming. Tech. rep., Department of Civil Engineering, Princeton University, 1986. Keywords: quadratic constraint programming, social accounting matrix, statistics $offText Set i 'accounts' / lab, h1, h2, p1, p2 /; Alias (i,j); Table xb(i,j) 'original estimate' lab h1 h2 p1 p2 lab 15 3 130 80 h1 na h2 na p1 15 130 20 p2 25 40 55 ; Parameter tb(i) 'original totals' / lab 220, (h1,h2) na, p1 190, p2 105 / tw(i) 'weights for totals' xw(i,j) 'weights for cells'; tw(i) = 1; tw(i)$(tb(i) = na) = 0; xw(i,j) = 1$xb(i,j); xw(i,j)$(xb(i,j) = na) = 0; display tw, xw; Variable x(i,j) 'estimated cells' t(i) 'estimated totals' dev 'deviations'; Equation rbal(i) 'row balance' cbal(j) 'column balance' devsqr 'definition of square deviations'; rbal(i).. t(i) =e= sum(j$xb(i,j), x(i,j)); cbal(j).. t(j) =e= sum(i$xb(i,j), x(i,j)); devsqr.. dev =e= sum((i,j)$xw(i,j), xw(i,j)*sqr(xb(i,j) - x(i,j))/xb(i,j)) + sum(i$tw(i), tw(i)*sqr(tb(i) - t(i))/tb(i)); Model bal / all /; x.l(i,j) = xb(i,j)$xw(i,j); t.l(i) = tb(i)$tw(i); solve bal using qcp minimizing dev; Parameter rep 'balancing summary report'; rep(i,j,'original') = xb(i,j); rep(i,j,'estimate') = x.l(i,j); display rep;