$title Financial Optimization: Risk Management using MIQCP (QMEANVAR,SEQ=291) $onText Minimum and maximum trade constraints are added to the standard mean-variance model. If it is not profitable to trade within these ranges, no trade should take place. A turnover constraint is added to improve stability of the solution to small changes in data. The resulting model is now expressed as a MIQCP and a frontiers is computed. Dahl, H, Meeraus, A, and Zenios, S A, Some Financial Optimization Models: Risk Management. In Zenios, S A, Ed, Financial Optimization. Cambridge University Press, New York, NY, 1993. Keywords: mixed integer quadratic constraint programming, financial optimization, risk management, finance $offText $eolCom // Set i 'securities' / cn, fr, gr, jp, sw, uk, us /; Alias (i,j); Parameter mu(i) 'expected return of security' / cn 0.1287, fr 0.1096 gr 0.0501, jp 0.1524 sw 0.0763, uk 0.1854 us 0.0620 /; Table q(i,j) 'covariance matrix' cn fr gr jp sw uk us cn 42.18 fr 20.18 70.89 gr 10.88 21.58 25.51 jp 5.30 15.41 9.60 22.33 sw 12.32 23.24 22.63 10.32 30.01 uk 23.84 23.80 13.22 10.46 16.36 42.23 us 17.41 12.62 4.70 1.00 7.20 9.90 16.42; * we will continue to use only the lower triangle of the q-matrix * and adjust the off diagonal entries to give the correct results. q(i,j) = 2*q(j,i); q(i,i) = q(i,i)/2; Scalars tau 'bounding parameter on turnover of current holdings' / 0.3 /; Set pd 'portfolio data labels' / old 'current holdings fraction of the portfolio' umin 'minimum increase of holdings fraction of security i' umax 'maximum increase of holdings fraction of security i' lmin 'minimum decrease of holdings fraction of security i' lmax 'maximum decrease of holdings fraction of security i' / Table bdata(i,pd) 'portfolio data and trading restrictions' * - increase - - decrease - old umin umax lmin lmax cn 0.2 0.03 0.11 0.02 0.30 fr 0.2 0.04 0.10 0.02 0.15 gr 0.0 0.04 0.07 0.04 0.10 jp 0.0 0.03 0.11 0.04 0.10 sw 0.2 0.03 0.20 0.04 0.10 uk 0.2 0.03 0.10 0.04 0.15 us 0.2 0.03 0.10 0.04 0.30; bdata(i,'lmax') = min(bdata(i,'old'),bdata(i,'lmax')); // tighten bound abort$(abs(sum(i, bdata(i,'old')) - 1) >= 1e5) 'error in bdata', bdata; Variable var 'variance of portfolio' ret 'return of portfolio' x(i) 'fraction of portfolio of current holdings of i' xi(i) 'fraction of portfolio increase' xd(i) 'fraction of portfolio decrease' y(i) 'binary switch for increasing current holdings of i' z(i) 'binary switch for decreasing current holdings of i'; Binary Variable y, z; Positive Variable x, xi, xd; Equation budget 'budget constraint' turnover 'restrict maximum turnover of portfolio' maxinc(i) 'bound of maximum lot increase of fraction of i' mininc(i) 'bound of minimum lot increase of fraction of i' maxdec(i) 'bound of maximum lot decrease of fraction of i' mindec(i) 'bound of minimum lot decrease of fraction of i' binsum(i) 'restrict use of binary variables' xdef(i) 'final portfolio definition' retdef 'return definition' vardef 'variance definition'; budget.. sum(i, x(i)) =e= 1; xdef(i).. x(i) =e= bdata(i,'old') - xd(i) + xi(i); maxinc(i).. xi(i) =l= bdata(i,'umax')*y(i); mininc(i).. xi(i) =g= bdata(i,'umin')*y(i); maxdec(i).. xd(i) =l= bdata(i,'lmax')*z(i); mindec(i).. xd(i) =g= bdata(i,'lmin')*z(i); binsum(i).. y(i) + z(i) =l= 1; turnover.. sum(i, xi(i)) =l= tau; retdef.. ret =e= sum(i, mu(i)*x(i)); vardef.. var =e= sum((i,j), x(i)*q(i,j)*x(j)); Model maxret / budget, xdef, turnover, maxinc, mininc, maxdec, mindec, binsum, retdef / minvar / budget, xdef, turnover, maxinc, mininc, maxdec, mindec, binsum, retdef, vardef /; Set p 'efficient frontier points' / oldr, minvar, p1*p4, maxret, oldv / pp(p) 'efficient frontier points' / p1*p4 /; Scalar rmin 'minimum variance' rmax 'maximum variance'; Parameter Report(p,i,*) 'portfolio details at different points' xres(*,p) 'summary report at different points'; option limCol = 0, limRow = 0, solPrint = off, optCr = 0; loop(p('maxret'), solve maxret max ret using mip; rmax = ret.l; xres(i,p) = x.l(i); report(p,i,'inc') = xi.l(i); report(p,i,'dec') = xd.l(i); ); xres(i,'oldr') = bdata(i,'old'); xres(i,'oldv') = bdata(i,'old'); loop(p('minvar'), solve minvar min var using miqcp; rmin = ret.l; xres(i,p) = x.l(i); report(p,i,'inc') = xi.l(i); report(p,i,'dec') = xd.l(i); ); loop(p(pp), ret.fx = rmin + (rmax - rmin)/(card(pp) + 1)*ord(pp); solve minvar min var using miqcp; xres(i,p) = x.l(i); report(p,i,'inc') = xi.l(i); report(p,i,'dec') = xd.l(i); ); xres('mean',p) = sum(i, mu(i)*xres(i,p)); xres('var' ,p) = sum((i,j), xres(i,p)*q(i,j)*xres(j,p)); display xres, report; $onText Output data to Excel into sheet 'Results' To create the two plots in Excel: Plot 1: Allocation - 1. Select data from C2:I8 and plot using an "Area Plot" (type: stacked area) Plot 2: Variance vs. Mean Return - 1. Create an XY Scatter Plot (type: 'scatter with data points connected by lines') 2. Data: Series 1: 'X-Values': =Results!$C$9:$H$9 'Y-Values': =Results!$C$10:$H$10 Series 2: 'X-Values': =(Results!$B$9,Results!$I$9) 'Y-Values': =(Results!$B$10,Results!$I$10) $offText EmbeddedCode Connect: - GAMSReader: symbols: - name: xres - ExcelWriter: file: results.xlsx symbols: - name: xres range: Results!A1 endEmbeddedCode