$title Opencast Mining (MINE,SEQ=39) $onText This model finds an optimal extraction schedule for an opencast mine with a side angle of 45 degrees and square plots. The extraction blocks are identified by level, row and column number, with the surface blocks having level number one. Williams, H P, Model Building in Mathematical Programming. John Wiley and Sons, 1978. Keywords: linear programming, mining, scheduling $offText Set l 'identifiers for level row and column labels' / 1*4 /; Alias (l,i,j); Table conc(l,i,j) 'estimated ore concentration (percent metal)' 1 2 3 4 1.1 1.5 1.5 1.5 .75 1.2 1.5 2.0 1.5 .75 1.3 1.0 1.0 .75 .50 1.4 .75 .75 .50 .25 2.1 4 4 2 2.2 3 3 1 2.3 2 2 .5 3.1 12 6 3.2 5 4 4.1 6 ; Set k 'location of four neighboring blocks' / nw, "ne", se, sw / c(l,i,j) 'neighboring blocks related to extraction feasibility' d(l,i,j) 'complete set of block identifiers'; Parameter li(k) 'lead for i' / (se,sw) 1 / lj(k) 'lead for j' / ("ne",se) 1 / cost(l) 'block extraction cost' / 1 3000, 2 6000, 3 8000, 4 10000 /; Scalar value 'extracted block value if 100 percent metal' / 200000 / ; c(l,i,j) = yes$((ord(l) + ord(i)) <= card(l) and (ord(l) + ord(j)) <= card(l)); d(l,i,j) = yes$( ord(l) + ord(i) <= card(l) + 1 and ord(l) + ord(j) <= card(l) + 1); display c, d; Variable x(l,i,j) 'extraction of blocks' profit; Positive Variable x; Equation pr(k,l,i,j) 'precedence relationships' def 'profit definition'; def.. profit =e= sum((l,i,j)$d(l,i,j), (conc(l,i,j)*value/100 - cost(l))*x(l,i,j)); pr(k,l+1,i,j)$c(l,i,j).. x(l,i+li(k),j+lj(k)) =g= x(l+1,i,j); x.up(l,i,j) = 1; Model mine / all /; solve mine maximizing profit using lp; Parameter rep(i,j,l) 'extraction decision table'; rep(i,j,l) = x.l(l,i,j); display rep;