$title Multiple Equilibria in a simple GE Model (KEHOMGE,SEQ=149) $onText This is a simple general equilibrium model with multiple (three) isolated equilibria. There are four commodities, two Leontief production activities, and four consumers with Cobb- Douglas preferences. Kehoe, T, A Numerical Investigation of the Multiplicity of Equilibria. Mathematical Programming Study 23 (1985), 240-258. MILES may find any of the three equilibria depending on the starting point. Keywords: mixed complementarity problem, general equilibrium model, fixed-point index, genericity, activity analysis $offText Set G 'goods' / G1*G4 / S 'sectors' / S1,S2 / C 'consumers' / C1*C4 / EQ 'equilibria' / EQ1*EQ3 /; Table SP(G,EQ) 'starting points for finding various equilibria.' EQ1 EQ2 EQ3 G1 1 1 1 G2 1 1 0.8 G3 1 0.2 0.7 G4 0.2 1 1 ; Table E(G,C) 'factor endowments' C1 C2 C3 C4 G1 5 G2 5 G3 40 G4 40; Table ALPHA(G,C) 'budget shares' C1 C2 C3 C4 G1 0.52 0.86 0.50 0.06 G2 0.40 0.10 0.20 0.25 G3 0.04 0.02 0.2975 0.0025 G4 0.04 0.02 0.0025 0.6875; Table A(G,S) 'activity analysis matrix' S1 S2 G1 6 -1 G2 -1 3 G3 -4 -1 G4 -1 -1; $onText $MODEL:KEHOE $SECTORS: Y(S) $COMMODITIES: P(G) $CONSUMERS: H(C) $DEMAND:H(C) s: 1.00 E:P(G) Q:E(G,C) D:P(G) Q:ALPHA(G,C) $PROD:Y(S) O:P(G)$(A(G,S) > 0) Q:A(G,S) I:P(G)$(A(G,S) < 0) Q:(-A(G,S)) $offText $sysInclude mpsgeset KEHOE Parameter PRICES(G,EQ), LEVELS(S,EQ); loop(EQ, $ include KEHOE.GEN P.l(G) = SP(G,EQ); solve KEHOE using mcp; PRICES(G,EQ) = P.l(G); LEVELS(S,EQ) = Y.l(S); ); display PRICES, LEVELS;