$title Stigler's Nutrition Model (DIET,SEQ=7) $onText This model determines a least cost diet which meets the daily allowances of nutrients for a moderately active man weighing 154 lbs. Dantzig, G B, Chapter 27.1. In Linear Programming and Extensions. Princeton University Press, Princeton, New Jersey, 1963. Keywords: linear programming, diet problem, Stigler diet, minimum cost diet $offText Set n 'nutrients' / calorie 'thousands', protein 'grams', calcium 'grams' iron 'milligrams', vitamin-a 'thousand ius', vitamin-b1 'milligrams' vitamin-b2 'milligrams', niacin 'milligrams' , vitamin-c 'milligrams' / f 'foods' / wheat , cornmeal , cannedmilk, margarine , cheese , peanut-b , lard liver , porkroast, salmon , greenbeans, cabbage , onions , potatoes spinach, sweet-pot, peaches , prunes , limabeans, navybeans /; Parameter b(n) 'required daily allowances of nutrients' / calorie 3, protein 70, calcium .8 iron 12, vitamin-a 5, vitamin-b1 1.8 vitamin-b2 2.7, niacin 18, vitamin-c 75 /; Table a(f,n) 'nutritive value of foods (per dollar spent)' calorie protein calcium iron vitamin-a vitamin-b1 vitamin-b2 niacin vitamin-c * (1000) (g) (g) (mg) 1000iu) (mg) (mg) (mg) (mg) wheat 44.7 1411 2.0 365 55.4 33.3 441 cornmeal 36 897 1.7 99 30.9 17.4 7.9 106 cannedmilk 8.4 422 15.1 9 26 3 23.5 11 60 margarine 20.6 17 .6 6 55.8 .2 cheese 7.4 448 16.4 19 28.1 .8 10.3 4 peanut-b 15.7 661 1 48 9.6 8.1 471 lard 41.7 .2 .5 5 liver 2.2 333 .2 139 169.2 6.4 50.8 316 525 porkroast 4.4 249 .3 37 18.2 3.6 79 salmon 5.8 705 6.8 45 3.5 1 4.9 209 greenbeans 2.4 138 3.7 80 69 4.3 5.8 37 862 cabbage 2.6 125 4 36 7.2 9 4.5 26 5369 onions 5.8 166 3.8 59 16.6 4.7 5.9 21 1184 potatoes 14.3 336 1.8 118 6.7 29.4 7.1 198 2522 spinach 1.1 106 138 918.4 5.7 13.8 33 2755 sweet-pot 9.6 138 2.7 54 290.7 8.4 5.4 83 1912 peaches 8.5 87 1.7 173 86.8 1.2 4.3 55 57 prunes 12.8 99 2.5 154 85.7 3.9 4.3 65 257 limabeans 17.4 1055 3.7 459 5.1 26.9 38.2 93 navybeans 26.9 1691 11.4 792 38.4 24.6 217 ; Positive Variable x(f) 'dollars of food f to be purchased daily (dollars)'; Free Variable cost 'total food bill (dollars)'; Equation nb(n) 'nutrient balance (units)' cb 'cost balance (dollars)'; nb(n).. sum(f, a(f,n)*x(f)) =g= b(n); cb.. cost =e= sum(f, x(f)); Model diet 'stiglers diet problem' / nb, cb /; solve diet minimizing cost using lp;