$title Simple Quasi-Variational Inequality (SIMPLEQVI1,SEQ=101) $onText This model shows how to solve a simple QVI using EMP QVI is to find y in K(x): F(y)(z - y) >= 0, for all z in K(x) K(x) is a set-valued mapping, and for a given x K(x) is a closed convex set. Contributor: Youngdae Kim (03.20.2018) $offText set i / 1*2 /; alias(i,j); positive variables y(i), x(i); equations F(i), g(i); F(i).. y(i) - 10 =N= 0; g(i).. (y('1') + x('2'))$(i.val eq 1) + (y('2') + x('1'))$(i.val eq 2) =L= 10; model qvi / F, g /; file empinfo / '%emp.info%' /; putclose empinfo 'qvi F y x g'; solve qvi using emp; $onText This could be reformulated as an MCP: $offText negative variable u(i) 'auxiliary vars, perp to g_aux(i)'; equation F_aux(i), g_aux; F_aux(i).. y(i) - 10 - u(i) =N= 0; g_aux(i).. sum(j, y(j)) =L= 10; u.l(i) = g.m(i); model reform / F_aux.y, g_aux.u /; reform.iterlim = 0; solve reform using mcp; abort$(reform.objval > 1e-6) 'Solutions differ';