$title Educational bilevel model with VI followers (MULTMPEC,SEQ=25) $onText This model demonstrate how to use EMP for a bilevel model with multiple inner variational inequality followers. The actual model to solve is: min_{u,v,w,z} z s.t. exp(z) + w = 2, z >= 1 (u,v) solves VI( [v+w+z-1; u-log(v)], {(u,v) | u >= 0, v >= 0 } ) w solves VI( w+z+3, { w | w free } ) Note that the two VI's (due to the definitional sets) correspond respectively to a complementarity problem: 0 <= u perpendicular to v + w + z - 1 >= 0 0 <= v perpendicular to u - log(v) >= 0 and a linear equation: w + z + 3 = 0 The starting value for v is needed to protect the evaluation of log(v). Contributor: Michael Ferris and Jan-H. Jagla, December 2009 $offText positive variable u; variables v, w, z; equations f1, f2, f3, h; f1.. v + w + z =n= 1; f2.. u =n= log(v); f3.. w + z =n= -3; h.. exp(z) + w =e= 2; v.lo = 0; v.l = 1; z.lo = 1; model mpec /all/; $onEcho > %emp.info% bilevel vi f1 u f2 v vi f3 w $offEcho solve mpec using emp min z;