$onText How is relative accuracy defined? Given: 1. a point x, 2. the computed value f(x), and 3. the known value fbar, we can compute the relative accuracy of f vis-a-vis fbar in two ways: 1. |f-fbar| <= reps * |fbar| 2. |f-fbar| <= reps * max(1,|x|) The first case is the most common, but for some functions the second is more appropriate (e.g. sin(x)). We can also pass a test if the absolute accuracy is within some tolerance aeps: 1. |f-fbar| <= aeps Contributor: Steven Dirkse, October 2004 $offText scalar aeps 'absolute error tolerance'; scalar aeps0 'absolute error tolerance, function'; scalar aeps1 'absolute error tolerance, first derivative'; scalar aeps2 'absolute error tolerance, second derivative'; scalar reps 'relative error tolerance'; scalar reps0 'relative error tolerance, function'; scalar reps1 'relative error tolerance, first derivative'; scalar reps2 'relative error tolerance, second derivative'; scalar relToInput 'reps is relative to input (not output) magnitude'; sets T 'all test instances' V / x, c, d, f, f_, f_r, f_a fx, fx_, fx_r, fx_a fxx, fxx_, fxx_r, fxx_a rc, rc_, rc_e ec, ec_, ec_e / badT(T) 'failed test instances' badTV(T,V) 'only the items/checks that failed' inV(V) 'inputs' / x, c, d / fV(V) 'func info' / f, f_, f_r, f_a / fxV(V) 'grad info' / fx, fx_, fx_r, fx_a / fxxV(V) 'Hess info' / fxx, fxx_, fxx_r, fxx_a / rcV(V) 'rc info' / rc, rc_, rc_e / ecV(V) 'ec info' / ec, ec_, ec_e / ; parameters data(T,V) tmp(T) failures(T,V) 'all data for failed test instances' fail2(T,V) 'most relevant data for failed test instances' ;