$onText Economic load dispatch for 15 generator systems with transmission losses modeled using B-matrix formulation (Kron). EDC of a total power of 1980 MW using 15 power generating units. $offText Set i generating units /1*15/; Set bou lower and upper /low, upp/; Set coef coefficients in fuel cost of thermal generating unit /a,b,c/; alias(i,j); * The output of the minimum and maximum operation of the * generating units in MW. Table bound(i,bou) low upp * MW MW 1 100 655 2 100 455 3 20 130 4 20 130 5 150 470 6 135 460 7 135 465 8 100 300 9 25 165 10 25 460 11 20 80 12 20 80 13 25 85 14 15 55 15 15 55 * The cost coefficients of generator units. Table data(i,coef) a b c * $/MW2 $/MW $ 1 0.000299 10.100 671.130 2 0.000183 10.200 574.010 3 0.001126 8.814 374.110 4 0.001126 8.800 374.000 5 0.000205 10.400 461.000 6 0.000301 10.100 630.000 7 0.000364 9.800 548.000 8 0.000338 11.200 227.000 9 0.000807 11.200 173.000 10 0.001203 10.700 175.200 11 0.003586 10.200 186.000 12 0.005513 9.900 230.000 13 0.000371 13.100 225.000 14 0.001929 12.100 309.000 15 0.004447 12.400 323.100 * The loss coefficients Table Losscoef(i,j) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1 1.4 1.2 0.7 0.1 0.3 0.1 0.1 0.1 0.3 0.5 0.3 0.2 0.4 0.3 0.1 2 1.2 1.5 1.3 0.0 0.5 0.2 0.0 0.1 0.2 0.4 0.4 0.0 0.4 1.0 0.2 3 0.7 1.3 7.6 0.1 1.3 0.9 0.1 0.0 0.8 1.2 1.7 0.0 2.6 11.1 2.8 4 0.1 0.0 0.1 3.4 0.7 0.4 1.1 5.0 2.9 3.2 1.1 0.0 0.1 0.1 2.6 5 0.3 0.5 1.3 0.7 9.0 1.4 0.3 1.2 1.0 1.3 0.7 0.2 0.2 2.4 0.3 6 0.1 0.2 0.9 0.4 1.4 1.6 0.0 0.6 0.5 0.8 1.1 0.1 0.2 1.7 0.3 7 0.1 0.0 0.1 1.1 0.3 0.0 1.5 1.7 1.5 0.9 0.5 0.7 0.0 0.2 0.8 8 0.1 0.1 0.0 5.0 1.2 0.6 1.7 16.8 8.2 7.9 2.3 3.6 0.1 0.5 7.8 9 0.3 0.2 0.8 2.9 1.0 0.5 1.5 8.2 12.9 11.6 2.1 2.5 0.7 1.2 7.2 10 0.5 0.4 1.2 3.2 1.3 0.8 0.9 7.9 11.6 20.0 2.7 3.4 0.9 1.1 8.8 11 0.3 0.4 1.7 1.1 0.7 1.1 0.5 2.3 2.1 2.7 14.0 0.1 0.4 3.8 16.8 12 0.2 0.0 0.0 0.0 0.2 0.1 0.7 3.6 2.5 3.4 0.1 5.4 0.1 0.4 2.8 13 0.4 0.4 2.6 0.1 0.2 0.2 0.0 0.1 0.7 0.9 0.4 0.1 10.3 10.1 2.8 14 0.3 1.0 11.1 0.1 2.4 1.7 0.2 0.5 1.2 1.1 3.8 0.4 10.1 57.8 9.4 15 0.1 0.2 2.8 2.6 0.3 0.3 0.8 7.8 7.2 8.8 16.8 2.8 2.8 9.4 128.3 ; Scalar Load /1980/; Variables P(i) optimal generation level of i obj minimum cost; Equations cost total generation cost bal demand-supply balance ; * Objective function: cost.. obj =e= sum(i,data(i,'a')*POWER(p(i),2) + data(i,'b')*P(i) + data(i,'c')); * Constraints: bal.. sum(i,P(i))-sum((i,j),P(i)*Losscoef(i,j)*P(J)/10000) =e= Load; * Bounds on variables: P.lo(i) = bound(i,'low'); p.up(i) = bound(i,'upp'); p.l(i) = (bound(i,'low') + bound(i,'upp'))/2; Model edc2 /all/; Solve edc2 minimizing obj using nlp; * End edc2