$onText Stability of a wire guided Daimler-Benz 0305 bus. References: Neculai Andrei, "Models, Test Problems and Applications for Mathematical Programming". Technical Press, Bucharest, 2003. Application A38, page 402. Ackermann, J., et al. " Robust gamma-stability analysis in a plant parameter space. Automatica, vol. 27, 1991, pp.75. Floudas, C.A., Pardalos, P.M., et al. "Handbook of Test Problems in Local and Global Optimization". Kluwer Academic Publishers, Dordrecht, 1999. Section 7.3.5. Test problem 15, page 102. $offText VARIABLES q1 q2 w frequency k stability margin objval objective function variable; FREE VARIABLES objval; EQUATIONS f Objective function g1 g2 b1l, b1u, b2l, b2u; f .. objval =e=k; g1 .. (POWER(q1,2)*POWER(q2,2))*POWER(w,8) - (1.25*1000*POWER(q1,2)*POWER(q2,2) + 16.8*POWER(q1,2)*q2 + 53.9*1000*q1*q2 + 270*1000)*POWER(w,6) + (1.45*POWER(10,6)*POWER(q1,2)*q2 + 16.8*POWER(10,6)*q1*q2 + POWER(10,6)*338)*POWER(w,4) - (5.72*POWER(10,6)*POWER(q1,2)*q2 + 113*POWER(10,6)*POWER(q1,2) + 4250*POWER(10,6)*q1)*POWER(w,2) + (453*POWER(10,6)*POWER(q1,2)) =e= 0; g2 .. (50*POWER(q1,2)*POWER(q2,2) + 1080*q1*q2)*POWER(w,6) - (15.6*1000*POWER(q1,2)*POWER(q2,2) + 840*POWER(q1,2)*q2 + 1.35*POWER(10,6)*q1*q2 + POWER(10,6)*13.5)*POWER(w,4) + (6.93*POWER(10,6)*POWER(q1,2)*q2 + 911*POWER(10,6)*q1 + POWER(10,6)*4220)*POWER(w,2) - (528*POWER(10,6)*POWER(q1,2) + 3640*POWER(10,6)*q1) =e= 0; b1l .. 17.5 - 14.5*k =l= q1; b1u .. q1 =l= 17.5 + 14.5*k; b2l .. 20.0 - 15.0*k =l= q2; b2u .. q2 =l= 20.0 + 15.0*k; * Bounds q1.LO=0; q1.UP=2; q2.LO=0; q2.UP=2; w.LO =0; w.UP =2; k.LO =0; k.UP =2; * Initial values; q1.l=0.1; q2.l=0.1; w.l=0.1; k.l=0.1; MODEL benz /ALL/; $ifThenI x%mode%==xbook benz.workspace=120; $endIf SOLVE benz USING NLP MINIMIZING objval; * End Benz