$title Grid Transportation Problem (TRNSGRID,SEQ=315) $onText This problem finds a least cost shipping schedule that meets requirements at markets and supplies at factories. The model demonstrates how to run multiple scenarios with different demands in a parallel fashion using the GAMS Grid Facility. Dantzig, G B, Chapter 3.3. In Linear Programming and Extensions. Princeton University Press, Princeton, New Jersey, 1963. Keywords: linear programming, transportation problem, scheduling, GAMS grid facility, scenario analysis $offText Set i 'canning plants' / seattle, san-diego / j 'markets' / new-york, chicago, topeka /; Parameter a(i) 'capacity of plant i in cases' / seattle 350 san-diego 600 / b(j) 'demand at market j in cases' / new-york 325 chicago 300 topeka 275 /; Table d(i,j) 'distance in thousands of miles' new-york chicago topeka seattle 2.5 1.7 1.8 san-diego 2.5 1.8 1.4; Scalar f 'freight in dollars per case per thousand miles' / 90 /; Parameter c(i,j) 'transport cost in thousands of dollars per case'; c(i,j) = f*d(i,j)/1000; Variable x(i,j) 'shipment quantities in cases' z 'total transportation costs in thousands of dollars'; Positive Variable x; * Demonstrate how to restrict the model index Set ij(i,j); ij(i,j) = yes; Equation cost 'define objective function with economies of scale' supply(i) 'observe supply limit at plant i' demand(j) 'satisfy demand at market j'; cost.. z =e= sum(ij(i,j), c(i,j)*x(i,j)); supply(i).. sum(j, x(i,j)) =l= a(i); demand(j).. sum(i, x(i,j)) =g= b(j); Model transport / all /; $eolCom // transport.solveLink = %solveLink.asyncGrid%; // turn on grid option transport.limCol = 0; transport.limRow = 0; transport.solPrint = %solPrint.quiet%; Set s 'scenarios' / 1*5 /; Parameter dem(s,j) 'random demand' h(s) 'store the instance handle'; dem(s,j) = b(j)*uniform(.95,1.15); // create some random demands loop(s, b(j) = dem(s,j); solve transport using lp minimizing z; h(s) = transport.handle; // save instance handle ); $ifThen not set ETIME_LIMIT * jobTrace is used as an indicator that slvtest called this model $ if not "%gams.jobTrace%" $set ETIME_LIMIT 10 $ if "%gams.jobTrace%" $set ETIME_LIMIT INF $endIf Parameter etimeLim 'time limit for collection loop' / %ETIME_LIMIT% / repx(s,i,j) 'solution report' repy 'summary report'; repy(s,'solvestat') = na; repy(s,'modelstat') = na; * we use the handle parameter to indicate that the solution has been collected repeat loop(s$handlecollect(h(s)), repx(s,i,j) = x.l(i,j); repy(s,'solvestat') = transport.solveStat; repy(s,'modelstat') = transport.modelStat; repy(s,'resusd' ) = transport.resUsd; repy(s,'objval') = transport.objVal; display$handledelete(h(s)) 'trouble deleting handles'; h(s) = 0; // indicate that we have loaded the solution ); display$sleep(card(h)*0.2) 'was sleeping for some time'; until card(h) = 0 or timeelapsed > etimeLim; // wait until all models are loaded display repx, repy; abort.noError$[card(h)>0] 'Grid collection loop too slow', etimeLim, h; abort$sum(s$(repy(s,'solvestat') = na),1) 'Some jobs did not return';