$title Stochastic Benders - Parallel MPI with GAMSModelInstance (SPBENDERS5,SEQ=422) $onText This example demonstrates a stochastic Benders implementation for the simple transport example. This is the fifth example of a sequence of stochastic Benders implementations using various methods to solve the master and subproblem. This fifth example implements the stochastic Benders algorithm using parallel implementation using MPI where the individual model (master or subproblem) in the GAMS jobs is implemented as a Python OO-API GamsModelInstance object. The advantage is that the models need to be generated only once and solved with varying data. Since the model rim of a GamsModelInstance cannot be changed, the master model includes all possible cuts with non-binding constraint at the beginning: sum(j, eps*received(j)) =l= bigM. During the cause of the algorithm the right hand side and the coefficients for received(j) are updated with the real cut data. In this example the model is started from the command line as follows: mpiexec -n 4 gams spbenders5 fileStemApFromEnv=PMI_RANK lo=2 On different platforms this command might look a little different. On HPC system, that often run Linux and use a specialized MPI, it might be more efficient (or even required) to use a Python version different from the one GAMS ships with. As documented in /latest/docs/API_PY_GETTING_STARTED.html GAMS Python API packages must also be installed for this Python. Also the PMI_RANK variable might be called differently. In any case GAMS needs to be instructed to use an external Python installation by pointing environment variable GMSPYTHONLIB to the external Python library: mpirun -n 4 GMSPYTHONLIB=/path/to/python/lib/libpython3.12.so gams spbenders5 fileStemApFromEnv=OMPI_COMM_WORLD_RANK lo=2 This command spawns card(s)+1 (=4 for the small example) copies of the spbenders4 model and the environment variable PMI_RANK decided which part the particular instance plays. The GAMS job with PMI_RANK=0 implements the master and the GAMS jobs PMI_RANK=1 to PMI_RANK=s implement the subproblems. The communication of the master variables received and the cut information happens via the Python package mpi4py and the GAMS embedded code facility. Keywords: linear programming, stochastic Benders algorithm, transportation problem, GAMS embedded code facility, Python, parallel computing, message passing interface $offText $set MPI_RANK notSet $if setenv PMI_RANK $set MPI_RANK %sysEnv.PMI_RANK% $if setenv OMPI_COMM_WORLD_RANK $set MPI_RANK %sysEnv.OMPI_COMM_WORLD_RANK% $if %MPI_RANK%==notSet $abort.noError This model needs to be started with mpiexec/mpirun. See preamble of the model source for details. $set MPI_SIZE notSet $if setenv PMI_SIZE $set MPI_SIZE %sysEnv.PMI_SIZE% $if setenv OMPI_COMM_WORLD_RANK $set MPI_SIZE %sysEnv.OMPI_COMM_WORLD_SIZE% $if %MPI_SIZE%==notSet $abort.noError This model needs to be started with mpiexec/mpirun. See preamble of the model source for details. $log --- Using Python library %sysEnv.GMSPYTHONLIB% Set i 'factories' / f1*f3 / j 'distribution centers' / d1*d5 /; Parameter capacity(i) 'unit capacity at factories' / f1 500, f2 450, f3 650 / demand(j) 'unit demand at distribution centers' / d1 160, d2 120, d3 270, d4 325, d5 700 / prodcost 'unit production cost' / 14 / price 'sales price' / 24 / wastecost 'cost of removal of overstocked products' / 4 /; Table transcost(i,j) 'unit transportation cost' d1 d2 d3 d4 d5 f1 2.49 5.21 3.76 4.85 2.07 f2 1.46 2.54 1.83 1.86 4.76 f3 3.26 3.08 2.60 3.76 4.45; $ifThen not set useBig Set s 'scenarios' / lo, mid, hi /; Table ScenarioData(s,*) 'possible outcomes for demand plus probabilities' d1 d2 d3 d4 d5 prob lo 150 100 250 300 600 0.25 mid 160 120 270 325 700 0.50 hi 170 135 300 350 800 0.25; $else $ if not set nrScen $set nrScen 10 Set s 'scenarios' / s1*s%nrScen% /; Parameter ScenarioData(s,*) 'possible outcomes for demand plus probabilities'; option seed = 1234; ScenarioData(s,'prob') = 1/card(s); ScenarioData(s,j) = demand(j)*uniform(0.6,1.4); $endIf $eval cardS card(s)+1 $if not %cardS%==%MPI_SIZE% $abort MPI size needs to be %cardS% $set solverlog $if set useSolverLog $set solverlog output=sys.stdout embeddedCode Python: try: from mpi4py import * except: raise Exception("Module mpi4py not found") comm = MPI.COMM_WORLD def symbols2List(*symbols): return list(map(lambda x: list(gams.get(x)), symbols)) def syncData(db_from, db_to, *args): for sym in args: db_from[sym].copy_symbol(db_to[sym]) def solveMI(mi, symIn=[], symOut=[]): for sym in symIn: gams.db[sym].copy_symbol(mi.sync_db[sym]) mi.solve(%solverlog%) for sym in symOut: try: gams.db[sym].clear() # Explicitly clear the symbol to ensure setting "writtenTo" flag for sym mi.sync_db[sym].copy_symbol(gams.db[sym]) except: pass pauseEmbeddedCode abort$execerror 'Problems setting up mpy4py or some other Python error. Check the log'; Parameter r(j) / #j 0/, osub(s), cconst(s), ccoeff(s,j); $ifThen.MPI 0==%MPI_RANK% * Benders master problem $if not set maxiter $set maxiter 25 Set iter 'max Benders iterations' / 1*%maxiter% /; Alias (iter,it); Parameter cutconst(iter) 'constants in optimality cuts' / #iter 0 / cutcoeff(iter,j) 'coefficients in optimality cuts' / #iter.#j 0 /; Variable ship(i,j) 'shipments' product(i) 'production' received(j) 'quantity sent to market' zmaster 'objective variable of master problem' theta 'future profit'; Positive Variable ship; Equation masterobj 'master objective function' production(i) 'calculate production in each factory' receive(j) 'calculate quantity to be send to markets' optcut(iter) 'Benders optimality cuts'; masterobj.. zmaster =e= theta - sum((i,j), transcost(i,j)*ship(i,j)) - sum(i,prodcost*product(i)); receive(j).. received(j) =e= sum(i, ship(i,j)); production(i).. product(i) =e= sum(j, ship(i,j)); optcut(iter).. theta =l= cutconst(iter) + sum(j, cutcoeff(iter,j)*received(j)); product.up(i) = capacity(i); Model masterproblem / all /; Scalar rgap 'relative gap' / 0 / lowerBound 'global lower bound' / -inf / upperBound 'global upper bound' / +inf / objMaster / 0 / objSub / 0 /; * Initialize cut to be non-binding cutconst(iter) = 1e15; cutcoeff(iter,j) = eps; $libInclude pyEmbMI miMaster 'masterproblem max zmaster using lp' -all_model_types=cplex cutconst.Accumulate cutcoeff.Accumulate option limRow = 0, limCol = 0, solPrint = silent, solver = cplex, solveLink = %solveLink.loadLibrary%; r(j) = 0; objMaster = 0; $if not set rtol $set rtol 0.001 loop(it, continueEmbeddedCode: comm.bcast([[0], list(gams.get('r'))], root=0) cut = comm.gather(None, root=0)[1:] gams.set('osub', [c[0][0] for c in cut]) gams.set('cconst', [c[1][0] for c in cut]) gams.set('ccoeff', [rec for s in cut for rec in s[2]]) pauseEmbeddedCode osub, cconst, ccoeff * The clear of the cut data below goes together with the Accumulate updateType * of the update symbols. It also work without the clear and updateType BaseCase * but requires much more data exchange because we communicate in every iteration * the data of all cuts generated so far option clear = cutconst, clear = cutcoeff; objSub = sum(s, osub(s)); cutconst(it) = eps + sum(s, cconst(s)); cutcoeff(it,j) = eps + sum(s, ccoeff(s,j)); if(lowerBound < objMaster + objSub, lowerBound = objMaster + objSub); rgap = (upperBound - lowerBound)/(1 + abs(upperBound)); break$(rgap < %rtol%); continueEmbeddedCode: solveMI(miMaster,['cutconst','cutcoeff'],['received','zmaster','theta']) pauseEmbeddedCode received, zmaster, theta upperBound = zmaster.l; objMaster = zmaster.l - theta.l; r(j) = received.l(j); ); * Terminate sub jobs continueEmbeddedCode: comm.bcast([[1],[]], root=0) endEmbeddedCode abort$(rgap >= %rtol%) 'need more iterations', lowerbound, upperbound; display 'optimal solution', lowerbound, upperbound; $else.MPI * Benders' subproblem Variable sales(j) 'sales (actually sold)' waste(j) 'overstocked products' zsub 'objective variable of sub problem'; Positive Variable sales, waste; Equation subobj 'subproblem objective function' selling(j) 'part of received is sold' market(j) 'upperbound on sales'; subobj.. zsub =e= sum(j, price*sales(j)) - sum(j, wastecost*waste(j)); selling(j).. sales(j) + waste(j) =e= r(j); market(j).. sales(j) =l= demand(j); Model subproblem / subobj, selling, market /; * Infinite loop Singleton set ss(s); ss(s) = ord(s)=%MPI_RANK%; demand(j) = scenarioData(ss,j); Scalar done; $libInclude pyEmbMI miSub 'subproblem max zsub using lp' -all_model_types=cplex r.Zero option limRow = 0, limCol = 0, solPrint = silent, solver = cplex, solveLink = %solveLink.loadLibrary%; while(1, continueEmbeddedCode: rx = comm.bcast(None, root=0) gams.set('done', rx[0]) miSub.sync_db['r'].clear() if not rx[0][0]: for rec in rx[1]: miSub.sync_db['r'].add_record(rec[0]).value = rec[1] miSub.solve(%solverlog%) syncData(miSub.sync_db,gams.db,'market','selling','zsub') pauseEmbeddedCode done, market, selling, zsub abort.noerror$done 'terminating subprocess'; osub(ss) = eps + ScenarioData(ss,'prob')*zsub.l; cconst(ss) = eps + ScenarioData(ss,'prob')*sum(j, market.m(j)*demand(j)); ccoeff(ss,j) = eps + ScenarioData(ss,'prob')*selling.m(j); continueEmbeddedCode: comm.gather(symbols2List('osub', 'cconst', 'ccoeff'), root=0 ) pauseEmbeddedCode ); $endIf.MPI