$title Structural Optimization (SHIP,SEQ=22) $onText This model designs a vertically corrugated transverse bulkhead of an oil tanker. The objective is to design for minimum weight and meet stress, moment of inertia and plate thickness constraints. Bracken, J, and McCormick, G P, Chapter 6. In Selected Applications of Nonlinear Programming. John Wiley and Sons, New York, 1968. Keywords: nonlinear programming, ship construction, bulkhead designment, engineering $offText Set s 'bulkhead sections' / top, middle, bottom /; Alias (s,sp); Scalar gam 'specific gravity of water (kg cm-3)' / .001 / sig 'maximum bending stress (kg cm-2)' / 1200 / dnv 'det norske veritas factor' / 3.9 / ca 'corrosion allowance (cm)' / na / e 'flange effectiveness' / na / ha 'height above panel (cm)' / 250 / gamsteel 'specific weight of steel' / .0078 / width 'width of panel (m)' / na / tlow 'lower bound on t (cm)' / na /; Parameter h(s) 'height at the middle of panel (cm)' hb(s) 'height at the base of panel (cm)' k1(s) 'constant number one' k2(s) 'constant number two' l(s) 'length of panel (cm)' / top 495, middle 385, bottom 315 /; hb(s) = ha + sum(sp$(ord(sp) <= ord(s)), l(sp)); h(s) = hb(s) - l(s)/2; k1(s) = gam*h(s)*l(s)*l(s)/12/sig; k2(s) = dnv*1.05e-4*sqrt(hb(s)); display l, h, hb, k1, k2; * the reference does not contain values for the parameters * e, width, ca, and t.lo. from reported optimal solutions and * using constraints stress and inertia a value for e can be calculated. * the width is only a scaling constant and is set to 500. ca is assumed * to be .2 and the lower bound of 1.05 on t was read out from solution values. e = .8; width = 500; ca = .2; tlow = 1.05; Variable z(s) 'module (cm3)' t(s) 'plate thickness (cm)' wl 'width of flange (cm)' lw 'length of web (cm)' d 'depth of corrugation (cm)' wc 'width of corrugation (cm)' w 'weight of structure (tons)' Equation zdef(s) 'module definition (cm3)' wdef 'width of corrugation - definition (cm)' stress(s) 'bending stress (kg cm-2)' inertia(s) 'moment of inertia (cm4)' platew(s) 'plate thickness - width of flange (cm)' platel(s) 'plate thickness - length of web (cm)' geom 'geometric constraint (cm)' weight 'total weight of structure (tons)'; zdef(s).. z(s) =e= d*t(s)*(lw/3+wl*e)/2; wdef.. wc =e= wl + sqrt(lw*lw-d*d); stress(s).. z(s) =g= k1(s)*wc; inertia(s).. z(s)*d/2 =g= 2.2*(k1(s)*wc)**(4/3); platew(s).. t(s) =g= k2(s)*wl + ca; platel(s).. t(s) =g= k2(s)*lw + ca; geom.. lw =g= d; weight.. w =e= gamsteel*width*(wl+lw)*sum(s, t(s)*l(s))/wc/1000; t.lo(s) = tlow; t.l("top") = 1.2; t.l("middle") = 1.2; t.l("bottom") = 1.3; wl.l = 45.8; lw.l = 43.2; d.l = 30.5; wc.l = wl.l + sqrt(lw.l**2-d.l**2); display wc.l; z.l(s) = d.l*t.l(s)*(lw.l/3+wl.l*e)/2; display z.l; wc.lo = 1; Model ship 'structural design of bulkhead' / all /; solve ship minimizing w using nlp;