$title Standard QP Model - intermediate Variables (QP3,SEQ=173) $onText Further speedup by simplifying the nonlinear terms. Additional information can be found at: /modlib/adddocs/qp3doc.htm Kalvelagen, E, Model Building with GAMS. forthcoming de Wetering, A V, private communication. Keywords: nonlinear programming, quadratic programming, finance $offText $include qpdata.inc Set d(days) 'selected days' s(stocks) 'selected stocks'; Alias (s,t); * select subset of stocks and periods d(days) = ord(days) > 1 and ord(days) < 31; s(stocks) = ord(stocks) < 51; Parameter mean(stocks) 'mean of daily return' dev(stocks,days) 'deviations' covar(stocks,sstocks) 'covariance matrix of returns (upper)' covarx(stocks,sstocks) 'covariance matrix - variation (upper)' totmean 'total mean return'; mean(s) = sum(d, return(s,d))/card(d); dev(s,d) = return(s,d)-mean(s); * calculate covariance * to save memory and time we only compute the uppertriangular * part as the covariance matrix is symmetric covar(upper(s,t)) = sum(d, dev(s,d)*dev(t,d))/(card(d) - 1); covarx(s,t) = 2*covar(s,t); covarx(s,s) = covar(s,s); totmean = sum(s, mean(s))/(card(s)); Variable z 'objective variable' x(stocks) 'investments' y(stocks) 'intermediate variable'; Positive Variable x; Equation obj 'objective' budget retcon 'return constraint' ydefa(stocks) 'not exploiting symmetry' ydefb(stocks) 'exploiting symmetry'; obj.. z =e= sum(s, y(s)*x(s)); ydefa(t).. y(t) =e= sum(upper(s,t), x(s)*covar(s,t)) + sum(lower(s,t), x(s)*covar(t,s)); ydefb(t).. y(t) =e= sum(s, x(s)*covarx(s,t)); budget.. sum(s, x(s)) =e= 1.0; retcon.. sum(s, mean(s)*x(s)) =g= totmean*1.25; Model qp3a / obj, ydefa, budget, retcon / qp3b / obj, ydefb, budget, retcon /; solve qp3a using nlp minimizing z; display x.l; ydefb.m(t) = ydefa.m(t); solve qp3b using nlp minimizing z; display x.l;