$title Optimal Process Mean (PROCMEAN,SEQ=301) $onText Find the optimal process mean when the quality characteristic follows a Beta distribution and using a linear quality loss. Erwin Kalvelagen, April 2004 Chen, C H, and Chou, C Y, Determining the Optimum Process Mean under a Beta Distribution. Journal of the Chinese Institute of Industrial Engineers 18 (3) (2003), 27--32. Phillips, M D, and Cho, B R, Determining the Optimum Process Mean under a Beta Distribution. A Nonlinear model for determining the most economic process mean under a beta distribution 7 (2000), 61--74. Keywords: nonlinear programming, statistics, process target, quality loss function, beta distribution, process optimization $offText Scalar a 'minimum value of quality characteristic' / 113 / b 'maximum value of quality characteristic' / 119 / alpha 'shape parameter' / 2 / beta 'shape parameter' / 4 / T 'target value' / 115 / k1 'quality loss coefficient when x < T' / 2 / k2 'quality loss coefficient when x > T' / 3 /; Scalar g1, g2, g3; g1 = gamma(alpha + beta)/(gamma(alpha)*gamma(beta)); g2 = gamma(alpha + 1)*gamma(beta)/gamma(alpha + beta + 1); g3 = g1*g2; Variable TC 'total expected cost per unit' delta 'location parameter' y 'transformation'; Equation tcdef 'cost model' ydef; tcdef.. tc =e= k1*T*betareg(y,alpha,beta) - k1*{(delta + a)*betareg(y,alpha,beta) +(b - a)*betareg(y,alpha + 1,beta)*g3} + k2*{(delta + a)*[1 - betareg(y,alpha,beta)] +(b - a)*[1 - betareg(y,alpha + 1,beta)*g3]} - k2*T*[1 - betareg(y,alpha,beta)]; ydef.. y =e= (T - delta - a)/(b - a); y.lo = 0.0001; y.up = 0.9999; y.l = 0.5; Model m / all /; solve m using nlp minimizing tc;