$title Himmelblau Test Problem Number 11 (HIMMEL11,SEQ=95) $onText Popular Series of Nonlinear Test Problems. Himmelblau, D M, Problem Number 11. In Applied Nonlinear Programming. Mc Graw Hill, New York, 1972. Keywords: nonlinear programming, quadratic constraint programming, mathematics $offText Variable g2, g3, g4, xl, x1, x2, x3, x4, x5, obj; Equation e1, e2, e3, e4, e5; e1.. -x1 - x5 + 5*xl + 7*x3 =g= 0; e2.. g2 =e= -2*xl + 85.334407 + .0056858*x2*x5 + .0006262*x1*x4 - .0022053*x3*x5; e3.. g3 =e= 80.51249 + .0071317*x2*x5 + .0029955*x1*x2 + .0021813*sqr(x3); e4.. g4 =e= -4*xl + 9.300961 + .0047026*x3*x5 + .0012547*x1*x3 + .0019085*x3*x4; e5.. obj =e= 5000*xl + 5.3578547*sqr(x3) + .8356891*x1*x5 + 37.293239*x1 - 40792.141; g2.lo = 0; g2.up = 92; g3.lo = 90; g3.up = 110; g4.lo = 20; g4.up = 25; xl.lo = 0; x1.lo = 78; x1.up = 102; x2.lo = 33; x2.up = 45; x3.lo = 27; x3.up = 45; x4.lo = 27; x4.up = 45; x5.lo = 27; x5.up = 45; x1.l = 78.62; x2.l = 33.44; x3.l = 31.07; x4.l = 44.18; x5.l = 35.22; Model himmel11 / all /; solve himmel11 using qcp minimizing obj;