$title An Infeasible Transportation Problem analyzed with option FeasOpt (FEASOPT1,SEQ=314) $onText This problem finds a least cost shipping schedule that meets requirements at markets and supplies at factories where demand exceeds supply using the feature FeasOpt implemented by Cplex and Gurobi. Dantzig, G B, Chapter 3.3. In Linear Programming and Extensions. Princeton University Press, Princeton, New Jersey, 1963. Keywords: linear programming, transportation problem, scheduling, solver option feasOpt, computing minimal relaxation, infeasible problem $offText $ifI %system.lp% == cplex $goTo cont $ifI %system.lp% == gurobi $goTo cont $ifI %system.lp% == copt $goTo cont $exit $label cont Set i 'canning plants' / seattle, san-diego / j 'markets' / new-york, chicago, topeka /; Parameter a(i) 'capacity of plant i in cases' / seattle 350 san-diego 600 / b(j) 'demand at market j in cases' / new-york 325 chicago 300 topeka 275 /; Table d(i,j) 'distance in thousands of miles' new-york chicago topeka seattle 2.5 1.7 1.8 san-diego 2.5 1.8 1.4; Scalar f 'freight in dollars per case per thousand miles' / 90 /; Parameter c(i,j) 'transport cost in thousands of dollars per case'; c(i,j) = f*d(i,j)/1000; Variable x(i,j) 'shipment quantities in cases' z 'total transportation costs in thousands of dollars'; Positive Variable x; Equation cost 'define objective function' supply(i) 'observe supply limit at plant i' demand(j) 'satisfy demand at market j'; cost.. z =e= sum((i,j), c(i,j)*x(i,j)); supply(i).. sum(j, x(i,j)) =l= a(i); demand(j).. sum(i, x(i,j)) =g= b(j); Model transport / all /; option limRow = 0, limCol = 0; * Increase demand by 20% b(j) = 1.2*b(j); solve transport using lp minimizing z; display 'The first phase of the Simplex algorithm distributed the infeasibilities as follows', x.infeas, supply.infeas, demand.infeas; $ifI %system.lp% == cplex File fslv 'solver option file' / cplex.opt /; transport.optFile = 1; $ifI %system.lp% == gurobi File fslv 'solver option file' / gurobi.opt /; transport.optFile = 1; $ifI %system.lp% == copt File fslv 'solver option file' / copt.opt /; transport.optFile = 1; * Lets try to move the infeasibilities on the demand side putClose fslv / 'feasopt 1' / 'equation.feaspref 0' / 'demand.feaspref 1'; solve transport using lp minimizing z; display 'All infeasibilities should be in the demand equations', x.infeas, supply.infeas, demand.infeas; abort$(sum((i,j), x.infeas(i,j)) + sum(i,supply.infeas(i)) > 1e-6) x.infeas, supply.infeas, demand.infeas; abort$(sum(j,demand.infeas(j)) < 1e-5) x.infeas, supply.infeas, demand.infeas; * Lets try to distribute the infeasibilities on the demand side by * using the sum of squares for the relaxation measurement putClose fslv / 'feasopt 1' / 'feasoptmode 4' / 'equation.feaspref 0' / 'demand.feaspref 1'; solve transport using lp minimizing z; display 'All infeasibilities should be in the demand equations and nicely distributed', x.infeas, supply.infeas, demand.infeas; abort$(sum((i,j), x.infeas(i,j)) + sum(i,supply.infeas(i)) > 1e-6) x.infeas, supply.infeas, demand.infeas; abort$(sum(j,demand.infeas(j)) < 1e-5) x.infeas, supply.infeas, demand.infeas; * Lets try to distribute the infeasibilities on the demand and supply * side by using the sum of squares for the relaxation measurement putClose fslv / 'feasopt 1' / 'feasoptmode 4'; solve transport using lp minimizing z; display 'All infeasibilities should be in the demand and supply equations and nicely distributed', x.infeas, supply.infeas, demand.infeas; abort$(sum((i,j), x.infeas(i,j)) > 1e-6) x.infeas, supply.infeas, demand.infeas; abort$(sum(i,supply.infeas(i)) + sum(j,demand.infeas(j)) < 1e-5) x.infeas, supply.infeas, demand.infeas; * Lets try to distribute the infeasibilities on the demand and supply * side by using the sum of squares for the relaxation measurement and * lets also optimize the transport shipment with respect to the * original objective function putClose fslv / 'feasopt 1' / 'feasoptmode 3'; solve transport using lp minimizing z; display 'All infeasibilities should be in the demand equations and nicely distributed with an "optimal" x', x.infeas, supply.infeas, demand.infeas, x.l; abort$(sum((i,j), x.infeas(i,j)) > 1e-6) x.infeas, supply.infeas, demand.infeas; abort$(sum(i,supply.infeas(i)) + sum(j,demand.infeas(j)) < 1e-5) x.infeas, supply.infeas, demand.infeas; * Lets adjust supply and demands based on the relaxation found a(i) = a(i) + supply.infeas(i); b(j) = b(j) - demand.infeas(j); * Now we should have a feasible model. The primals from our previous * solve should be the optimal one, so lets save them to compare them * with the outcome with the next solve; Parameter xbest(i,j); xbest(i,j) = x.l(i,j); * Lets try to tell the solver to do a warm start * from just the primals using primal Simplex (copt: dual Simplex) $ifI %system.lp% == cplex putClose fslv / 'advind 2' / 'lpmethod 1'; $ifI %system.lp% == gurobi putClose fslv / 'usebasis 1' / 'method 0'; $ifI %system.lp% == copt putClose fslv / 'presolve 0' / 'lpmethod 1'; solve transport using lp minimizing z; * We better have an optimum solution and the same primals as in the * previous run. This is a little dangerous since the problem is * degenerated. abort$(transport.modelStat <> %modelStat.optimal% or sum((i,j), xbest(i,j) - x.l(i,j)) > 1e-6) x.l, xbest;