$title LGO Interface Example (FCT,SEQ=265) $onText This example is taken from the LGO Interface Guide. It is a 5-variable, 3-constraint test problem with the global solution at x* = 0 f(x*) = 0. Janos Pinter, LGO - Users Guide, Pinter Consulting Services, Halifax, Canada, 2003. Keywords: nonlinear programming, discontinuous derivatives, mathematics $offText Scalar scaleaux / 2 /; Variable obj, aux1, aux1a, aux2, aux2a, aux, fct, x1, x2, x3, x4, x5; Equation defobj, deffct, defaux, defaux1, defaux1a, defaux2, defaux2a, con1, con2, con3; defobj.. obj =e= fct + scaleaux*aux; deffct.. fct =e= sqr(x1) + sqr(x2) + sqr(x3) + sqr(x4) + sqr(x5); defaux.. aux =e= aux1a + aux2a; defaux1.. aux1 =e= sqr(sqr(x1) - x2) + sqr(x3) + 2*sqr(x4) + sqr(x5 - x2); defaux1a.. aux1a =e= abs(sin(4*mod(aux1,pi))); defaux2.. aux2 =e= sqr(x1 + x2 - x3 + x4 - x5) + 2*sqr(-x1 + x2 + x3 - x4 + x5); defaux2a.. aux2a =e= abs(sin(3*mod(aux2,pi))); con1.. x1 + 3*sqr(x2) + sqr(x3) - 2*sqr(x4) + sqr(x5) =e= 0; con2.. x1 + 4*x2 - x3 + x4 - 3*x5 =e= 0; con3.. sqr(x1) - sqr(x3) + 2*sqr(x2) - sqr(x4) - sqr(x5) =e= 0; Model m / all /; *$onText x1.lo = -10; x1.l = 2; x1.up = 5; x2.lo = -10; x2.l = 2; x2.up = 5; x3.lo = -10; x3.l = 2; x3.up = 5; x4.lo = -10; x4.l = 2; x4.up = 5; x5.lo = -10; x5.l = 2; x5.up = 5; *$offText solve m using dnlp min obj; Parameter report 'diff from global solution'; report('x1') = round(0 - x1.l,6); report('x2') = round(0 - x2.l,6); report('x3') = round(0 - x3.l,6); report('x4') = round(0 - x4.l,6); report('x5') = round(0 - x5.l,6); display report;