$title Decomposition Principle - Animated (DECOMP,SEQ=164) $onText The coordinator of a Central Agency must procure tanker services to assist his distribution. A subcontractor handles all the shipping details. This scenario is used to demonstrate the decomposition principle. For details see chapter 23-2 of Dantzig's original text on Linear Programming. Dantzig, G B, Chapter 23.2. In Linear Programming and Extensions. Princeton University Press, Princeton, New Jersey, 1963. Keywords: linear programming, decomposition, distribution problem, transportation problem, shipping $offText Set i 'plants' / plant-1, plant-2 / j 'terminals' / term-1*term-4 /; Table c(i,j) 'cost matrix' term-1 term-2 term-3 term-4 plant-1 3 6 6 5 plant-2 8 1 3 6; Table t(i,j) 'tankers required' term-1 term-2 term-3 term-4 plant-1 2 plant-2 2 ; Parameter a(i) 'availability' / plant-1 9, plant-2 8 / b(j) 'requirements' / term-1 2, term-2 7, term-3 3, term-4 5 / ctank 'tanker cost' cship 'shipping cost'; Variable cost 'total cost' tank 'total tankers used' ship 'shipping cost' x(i,j) 'shipments'; Positive Variable x; Equation defcost 'cost definition' defship 'shipping cost' deftank 'tanker usage' supply(i) 'supply balance' demand(j) 'demand balance'; defcost.. cost =e= cship*ship + ctank*tank; defship.. ship =e= sum((i,j), c(i,j)*x(i,j)); deftank.. tank =e= sum((i,j), t(i,j)*x(i,j)); supply(i).. sum(j, x(i,j)) =l= a(i); demand(j).. sum(i, x(i,j)) =g= b(j); Model sub / defcost, defship, deftank, demand, supply /; Set ss 'master column labels' / 1*10 / s(ss) 'active columns'; Parameter mcost(ss) 'cost solutions' mtank(ss) 'tanker solutions'; Variable mobj lam(ss) 'column selection'; Positive Variable lam; Equation cbal 'cost balance' tbal 'tanker balance' convex 'combination'; cbal.. mobj =e= sum(s, mcost(s)*lam(s)); tbal.. sum(s, mtank(s)*lam(s)) =l= 9; convex.. sum(s, lam(s)) =e= 1; Model master / cbal, tbal, convex /; Parameter rep(ss,*); * get first solution with zero cost for tankers cship = 1; ctank = 0; solve sub using lp minimizing cost; mcost('1') = ship.l; mtank('1') = tank.l; * get second solution with zero cost for tankers option limCol = 0, limRow = 0; solve sub using lp minimizing tank; mcost('2') = ship.l; mtank('2') = tank.l; * solve first master problem s('1') = yes; s('2') = yes; solve master using lp minimizing mobj; rep('2','obj') = mobj.l; rep('2','s-pi') = convex.m; rep('2','t-pi') = -tbal.m; rep('2','gap') = inf; * now we are ready to iterate between master and sub problem; loop(ss$((not s(ss)) and (rep(ss-1,'gap') > .01)), ctank = -tbal.m; solve sub using lp minimizing cost; mcost(ss) = ship.l; mtank(ss) = tank.l; s(ss) = yes; solve master using lp minimizing mobj; rep(ss,'obj') = mobj.l; rep(ss,'s-pi') = convex.m; rep(ss,'t-pi') = -tbal.m; rep(ss,'bnd') = rep(ss-1,'obj') - rep(ss-1,'s-pi') + mcost(ss) + mtank(ss)*rep(ss - 1,'t-pi'); rep(ss,'best-bnd') = max(rep(ss - 1,'best-bnd'),rep(ss,'bnd')); rep(ss,'gap') = rep(ss,'obj') - rep(ss,'best-bnd'); ); display mcost, mtank, rep;