$title Chance Constraint Feed Mix Problem (CHANCE,SEQ=26) $onText Cattle feed problem with chance constraints. Two problems are formulated, a deterministic model and the chance constraint version deterministic equivalent. Bracken, J, and McCormick, G P, Chapter 9. In Selected Applications of Nonlinear Programming. John Wiley and Sons, New York, 1968, pp. 94-100. Keywords: linear programming, nonlinear programming, feed mix problem, chance constrained programming $offText Set f 'feeds' / barley, oats, sesame, grnd-meal / n 'nutrients' / protein, fats /; Parameter price(f) 'feed prices (fgld per ton)' / barley 24.55 oats 26.75 sesame 39.00 grnd-meal 40.50 / req(n) 'requirements (pct)' / protein 21 fats 5 /; Table char(*,n,f) 'feed characteristics (pct)' barley oats sesame grnd-meal mean.protein 12.0 11.9 41.8 52.1 mean.fats 2.3 5.6 11.1 1.3 variance.protein .28 .19 20.5 .62; Variable cost 'total cost per ton' x(f) 'feed mix (pct)'; Positive Variable x; Equation cdef 'cost definition' mc 'mix constraint' nbal(n) 'nutrient balance' cc(n) 'chance constraint'; cdef.. cost =e= sum(f, price(f)*x(f)); mc.. sum(f, x(f)) =e= 1; nbal(n).. sum(f, char("mean",n,f)*x(f)) =g= req(n); cc(n).. sum(f, char("mean",n,f)*x(f)) - 1.645*sqrt(sum(f, char("variance",n,f)*sqr(x(f)))) =g= req(n); Model det 'deterministic model' / cdef, mc, nbal / chance 'chance model' / cdef, mc, cc /; Parameter mix 'mixing report'; solve det minimizing cost using lp; mix(f,'det ') = x.l(f); solve chance minimizing cost using nlp; mix(f,'chance') = x.l(f); display mix;