$title Optimal Growth Model (CHAKRA,SEQ=43) $onText Simple one sector nonlinear optimal growth model. Kendrick, D, and Taylor, L, Numerical methods and Nonlinear Optimizing models for Economic Planning. In Chenery, H B, Ed, Studies of Development Planning. Harvard University Press, 1971. Chakravarty, S, Optimum Savings with a Finite Planning Horizon. International Economic Review 3 (1962), 338-355. Keywords: nonlinear programming, economic growth model, macro economics $offText Set t 'extended horizon' / 0*20 / tb(t) 'base period' tt(t) 'terminal period'; tb(t) = yes$(ord(t) = 1); tt(t) = yes$(ord(t) = card(t)); display tb, tt; Scalar delt 'rate of depreciation' / .05 / beta 'exponent on capital' / .75 / a 'efficiency parameter' r 'labor force growth rate' / .025 / eta 'elasticity' / .9 / z 'technical progress' / .01 / rho 'welfare discount' / .03 / y0 'initial income' / 4.275 / k0 'initial capital' / 15.0 /; Parameter dis(t) 'discount factor' alpha(t) 'production function parameter'; a = y0/k0**beta; dis(t) = (1 + rho)**(1 - ord(t))/(1 - eta); alpha(t) = a*(1 + r*(1 - beta) + z)**(ord(t) - 1); display a, dis, alpha; Variable c(t) 'consumption' y(t) 'income' k(t) 'capital stock' j 'performance index'; Equation kb(t) 'capital stock balance' yd(t) 'income definition' jd 'performance index definition'; jd.. j =e= sum(t, dis(t-1)*c(t-1)**(1 - eta)); yd(t).. y(t) =e= alpha(t)*k(t)**beta; kb(t+1).. k(t+1) =e= y(t) - c(t) + (1 - delt)*k(t); y.l(t) = y0*(1.06)**(ord(t) - 1); k.l(t) = (y.l(t)/alpha(t))**(1/beta); c.l(t) = y.l(t) + (1 - delt)*k.l(t) - k.l(t+1); display c.l, k.l, y.l; k.lo(t) = 1; y.lo(t) = 1; c.lo(t) = 1; y.fx(tb) = y.l(tb); y.fx(tt) = y.l(tt); Model growth / all /; solve growth maximizing j using nlp; Parameter report 'solution summary'; report(t,"k") = k.l(t); report(t,"y") = y.l(t); report(t,"c") = c.l(t); report(t,"s-rate") = (y.l(t) - c.l(t))/y.l(t); display report;