$title Ajax Paper Company Production Schedule (AJAX,SEQ=60) $onText This sample model is taken from the cybernet pds/apex sample library of models. A paper manufacturer can produce four different types of paper on three different machines. Given a fixed demand schedule the objective is to find a production plan that maximizes monthly profits. CDC, PDS/APEX Sample Model Library, 1977. Control Data Corporation Keywords: linear programming, production planning, paper industry, micro economics, scheduling $offText Set m 'machines at mills' / machine-1, machine-2, machine-3 / g 'paper grades' / 20-bond-wt, 25-bond-wt, c-bond-ext, tissue-wrp /; Table prate(g,m) 'production rate (tons per hour)' machine-1 machine-2 machine-3 20-bond-wt 53 52 49 25-bond-wt 51 49 44 c-bond-ext 52 45 47 tissue-wrp 42 44 40; Table pcost(g,m) 'production cost ($ per ton)' machine-1 machine-2 machine-3 20-bond-wt 76 75 73 25-bond-wt 82 80 78 c-bond-ext 96 95 92 tissue-wrp 72 71 70; Table dempr(g,*) 'demand and prices' demand price 20-bond-wt 30000 77 25-bond-wt 20000 81 c-bond-ext 12000 99 tissue-wrp 8000 105; Parameter avail(m) 'available machine time (hours per month)' / machine-1 672, machine-2 600, machine-3 480 /; Variable outp(g,m) 'production (tons per month)' profit 'profit ($ per month)'; Positive Variable outp; Equation cap(m) 'machine capacity (hours per month)' dem(g) 'demand (tons per month)' pdef 'profit definition ($ per month)'; cap(m).. sum(g, outp(g,m)/prate(g,m)) =l= avail(m); dem(g).. sum(m, outp(g,m)) =e= dempr(g,"demand"); pdef.. profit =e= sum(g, dempr(g,"demand")*dempr(g,"price")) - sum((g,m), pcost(g,m)*outp(g,m)); Model ajax / all /; solve ajax using lp maximizing profit; $sTitle Report Definitions Parameter mtr(m,*) 'machine time report' par(g,*) 'production allocation report'; mtr(m,"avail-h") = avail(m); mtr(m,"used-h") = cap.l(m); mtr(m,"unused-h") = avail(m) - cap.l(m); mtr(m,"marginal") = - cap.m(m); par(g,"demand") = dempr(g,"demand"); par(g,"sold") = dem.l(g); par(g,"unsold") = dempr(g,"demand") - dem.l(g); par(g,"marginal") = dem.m(g); display mtr, par, outp.l, outp.m;