$title Regret models * Regret.gms: Regret models. * Consiglio, Nielsen and Zenios. * PRACTICAL FINANCIAL OPTIMIZATION: A Library of GAMS Models, Section 5.4 * Last modified: Apr 2008. * Uncomment one of the following lines to include a data file *$include "Corporate.inc" $include "WorldIndices.inc" SCALARS Budget Nominal investment budget EpsRegret Tolerance allowed for epsilon regret models MU_TARGET Target portfolio return MU_STEP Target return step MIN_MU Minimum return in universe MAX_MU Maximum return in universe RISK_TARGET Bound on expected regret (risk); Budget = 100.0; PARAMETERS pr(l) Scenario probability P(i,l) Final values EP(i) Expected final values; pr(l) = 1.0 / CARD(l); P(i,l) = 1 + AssetReturns ( i, l ); EP(i) = SUM(l, pr(l) * P(i,l)); MIN_MU = SMIN(i, EP(i)); MAX_MU = SMAX(i, EP(i)); * Assume we want 20 portfolios in the frontier MU_STEP = (MAX_MU - MIN_MU) / 20; PARAMETER TargetIndex(l) Target index returns; * To test the model with a market index, uncomment the following two lines. * Note that, this index can be used only with WorldIndexes.inc. *$include "Index.inc"; *TargetIndex(l) = Index(l); POSITIVE VARIABLES x(i) Holdings of assets in monetary units (not proportions) Regrets(l) Measures of the negative deviations or regrets; VARIABLES z Objective function value; EQUATIONS BudgetCon Equation defining the budget contraint ReturnCon Equation defining the portfolio return constraint ExpRegretCon Equation defining the expected regret allowed ObjDefRegret Objective function definition for regret minimization ObjDefReturn Objective function definition for return mazimization RegretCon(l) Equations defining the regret constraints EpsRegretCon(l) Equations defining the regret constraints with tolerance threshold; BudgetCon .. SUM(i, x(i)) =E= Budget; ReturnCon .. SUM(i, EP(i) * x(i)) =G= MU_TARGET * Budget; ExpRegretCon .. SUM(l, pr(l) * Regrets(l)) =L= RISK_TARGET; RegretCon(l) .. Regrets(l) =G= TargetIndex(l) * Budget - SUM(i, P(i,l) * x(i)); EpsRegretCon(l) .. Regrets(l) =G= (TargetIndex(l) - EpsRegret) * Budget - SUM(i, P(i,l) * x(i)); ObjDefRegret .. z =E= SUM(l, pr(l) * Regrets(l)); ObjDefReturn .. z =E= SUM(i, EP(i) * x(i)); MODEL MinRegret 'PFO Model 5.4.1' /BudgetCon, ReturnCon, RegretCon, ObjDefRegret/; MODEL MaxReturn /BudgetCon, ExpRegretCon, EpsRegretCon, ObjDefReturn/; FILE FrontierHandle /"RegretFrontiers.csv"/; FrontierHandle.pc = 5; FrontierHandle.pw = 1048; PUT FrontierHandle; PUT "Status","Regret","Mean"; LOOP (i, PUT i.tl); PUT "","Status","Regret","Mean"/; * Comment the following line if you want to * track the market index. TargetIndex(l) = 1.01; EpsRegret = 0.0; * The two models are equivalent. Indeed, they yield the * same efficient frontier. FOR (MU_TARGET = MIN_MU TO MAX_MU BY MU_STEP, SOLVE MinRegret MINIMIZING z USING LP; PUT MinRegret.MODELSTAT:0:0,z.L:6:5,(MU_TARGET * Budget):8:3; LOOP (i, PUT x.L(i):6:2); RISK_TARGET = z.L; PUT ""; SOLVE MaxReturn MAXIMIZING z USING LP; PUT MaxReturn.MODELSTAT:0:0,RISK_TARGET:6:5,z.L:8:3; LOOP (i, PUT x.L(i):6:2); PUT /; );