$title 'Basic GUSS Test' (SCENSOL4,SEQ=642) $onText Contributor: Michael Bussieck, February 2014 $offText Sets i canning plants / seattle, san-diego / j markets / new-york, chicago, topeka / ; Parameters a(i) capacity of plant i in cases / seattle 350 san-diego 600 / b(j) demand at market j in cases / new-york 325 chicago 300 topeka 275 / ; Table d(i,j) distance in thousands of miles new-york chicago topeka seattle 2.5 1.7 1.8 san-diego 2.5 1.4 ; Scalar f freight in dollars per case per thousand miles /90/ ; Parameter c(i,j) transport cost in thousands of dollars per case ; c(i,j) = f * d(i,j) / 1000 ; Variables x(i,j) shipment quantities in cases z total transportation costs in thousands of dollars ; Positive Variable x ; Equations cost define objective function supply(i) observe supply limit at plant i demand(j) satisfy demand at market j ; cost .. z =e= sum((i,j), f * d(i,j) / 1000 *x(i,j)) ; supply(i) .. sum(j, x(i,j)) =l= a(i) ; demand(j) .. sum(i, x(i,j)) =g= b(j) ; Equation e dummy n row; e.. sum((i,j), x(i,j)) =n= 3; Model transport /all/ ; * The DICT set has three dimensions * 1 Model symbol * 2 Action type * 3 Update parameter * DICT needs to be specified by a data statement set dict / s.scenario . '' o. opt .srep d. param .ds a. param .as x. upper .xup f. param .fs cost.marginal.xcost x. level .xx / * Problems: * 1 QCP will not work, nor MCP, MPECS. set s /s1*s10/; Parameter ds(s,i,j) updater for d as(s,i) updater for a xup(s,i,j) updater for x.up fs(s) updater for f xcost(s) collector for marginal of cost xx(s,i,j) collector for level of x $eolCom // Set ma GUSS Model Attributes / system.GUSSModelAttributes /; Parameter o(*) GUSS options / OptfileInit 0 // Read solver options for initial solve Optfile 0 // Read solver options for successive solves LogOption 0 // 0 - Moderate log (default) // 1 - Minimal log // 2 - Detailed log SkipBaseCase 1 // Switch for solving the base case UpdateType 0 // Scenario update mechanism: // 0 - set everything to 0 and apply changes // 1 - reestablish base case and apply changes // 2 - build on top of last scenario and apply changes / srep(s,ma) Solution attributes / #s.(ModelStat na) /; ds(s,i,j) = max(0,uniform(-5,2)) + eps; as(s,i) = a(i)*(1+normal(0.05,0.1)); xup(s,i,j) = uniform(120,300); fs(s) = uniform(80,100); * Run GUSS Solve transport using lp minimizing z scenario dict; display srep;