$onText The reactor network design problem. Ryoo, H.S., Sahinidis, N.V., Global optimization of nonconvex NLPs and MINLPs with applications in process design. Comput. Chem. Eng., 19, 1995, pp.551-566. Floudas, C.A., Pardalos, P.M., et al. Handbook of Test Problems in Local and Global Optimization. Kluwer Academic Publishers, Dordrecht, 1999, Section 8.2.8, Test problem 8, pp. 113-114. $offText Scalars k1 /0.09755988/ k2 /0.09658428/ k3 /0.0391908 / k4 /0.9/; Variables ca1, ca2, cb1, cb2, v1, v2, obj; Equations e1, e2, e3, e4, e5, e; e1.. ca1 + k1*ca1*v1 =e= 1; e2.. ca2 - ca1 + k2*ca2*v2 =e= 0; e3.. cb1 + ca1 + k3*cb1*v1 =e= 1; e4.. cb2 - cb1 + ca2 - ca1 + k4*cb2*v2 =e= 0; e5.. sqrt(v1) + sqrt(v2) =l= 4; e.. obj =e= -cb2; * Bounds on variables ca1.lo = 0; ca1.up = 1; ca2.lo = 0; ca2.up = 1; cb1.lo = 0; cb1.up = 1; cb2.lo = 0; cb2.up = 1; v1.lo = 0.00001; v1.up = 16; v2.lo = 5.00001; v2.up = 16; *Initial point ca1.l = 1; ca2.l = 1; cb1.l = 1; cb2.l = 1; v1.l = 1; v2.l = 1; Model netreactor /all/; Solve netreactor minimizing obj using nlp; * End netreactor