$title Linear Multiplicative Programs - Type 3 (LMP3,SEQ=253) $onText Generate and solves random linear multiplicative models of "Type 3." Problem instances are generated as proposed by Benson and Boger. Model developed by N. Sahinidis. H. P. Benson and G. M. Boger, "Multiplicative programming problems: Analysis and efficient point search heuristic", Journal of Optimization Theory and Applications, 94(487-510), 1997. M. Tawarmalani and N. Sahinidis, Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming: Theory, Algorithms, Software, and Applications, Kluwer Academic Publishers, 2002. Keywords: nonlinear programming, linear multiplicative programming, global optimization, concave minimization $offText option optCr = 0, optCa = 1.e-6, limRow = 0, limCol = 0, solPrint = off; Set mm / m1*m220 / nn / n1*n200 / pp / p1*p4 /; Set m(mm) 'constraints' n(nn) 'variables' p(pp) 'products' c 'cases' / c1*c9 / i 'instances' / i1*i5 /; * For each case to be solved, we use a different (m,n,p) triplet Table cases(c,*) m n p c1 20 30 2 c2 120 100 2 c3 220 200 2 c4 20 30 3 c5 120 120 3 c6 200 180 3 c7 20 30 4 c8 100 100 4 c9 200 200 4; Parameter cc(pp,nn) 'cost coefficients' A(mm,nn) 'constraint coefficients' b(mm) 'left-hand-side' rep(c,*) 'summary report' mactual nactual pactual ResMin Resmax NodMin Nodmax; Variable y(pp) x(nn) obj; Equation Objective Constraints(mm) Products(pp); Objective.. obj =e= prod(p, y(p)); Products(p).. y(p) =e= sum(n, cc(p,n)*x(n)); Constraints(m).. b(m) =l= sum(n, A(m,n)*x(n)); x.lo(nn) = 1; Model lmp3 / all /; lmp3.workSpace = 32; rep(c,'AvgResUsd') = 0; rep(c,'AvgNodUsd') = 0; loop(c, m(mm) = ord(mm)<= cases(c,'m'); n(nn) = ord(nn)<= cases(c,'n'); p(pp) = ord(pp)<= cases(c,'p'); mactual = cases(c,'m'); nactual = cases(c,'n'); pactual = cases(c,'p'); ResMin = inf; Resmax = 0; NodMin = inf; Nodmax = 0; loop(i, cc(p,n) = round(uniform(1,10)); A(m,n) = round(uniform(1,10)); b(m) = sum(n, A(m,n)**2); x.up(n) = smax(m, b(m)); * Set initial starting point for all models to 0 x.l(n) = 0; y.l(p) = 0; Solve lmp3 minimizing obj using nlp; rep(c,'AvgResUsd') = rep(c,'AvgResUsd') + lmp3.resUsd; rep(c,'AvgNodUsd') = rep(c,'AvgNodUsd') + lmp3.nodUsd; ResMin = min(ResMin, lmp3.resUsd); NodMin = min(NodMin, lmp3.nodUsd); ResMax = max(ResMax, lmp3.resUsd); NodMax = max(NodMax, lmp3.nodUsd); ); rep(c,'MinResUsd') = ResMin; rep(c,'MaxResUsd') = ResMax; rep(c,'MinNodUsd') = NodMin; rep(c,'MaxNodUsd') = NodMax; ); rep(c,'AvgResUsd') = rep(c,'AvgResUsd')/card(i); rep(c,'AvgNodUsd') = rep(c,'AvgnodUsd')/card(i); display rep;