Sets n nodes / one, two, three, four, five, six / L(n) regions / one, two, three / NL(n) 'complement of L' ; NL(n) = not(L(n)); Alias (n,i,j); Alias (L,Q,QQ,Qi); Set Q1(Q); Table coefs(L,*) demand and supply data alpha beta rho eta one 1.0 .5 19 .2 two 2.0 .4 27 .01 three 1.5 .3 30 .3 ; Table pairs(i,j,*) transport data kappa nu one.four 1 .5 one.five 2 .2 two.six 3 .3 three.six 1 .4 four.one 2 .3 four.five 1 .1 four.six 1 .1 five.one 3 .5 five.four 2 .2 five.six 1 1.0 six.two 2 .25 six.three 2 .2 six.four 1 .9 six.five 3 .8 ; parameter alpha(L), beta(L), rho(L), eta(L) kappa(i,j), nu(i,j); alpha(L) = coefs(L,'alpha'); beta(L) = coefs(L,'beta'); rho(L) = coefs(L,'rho'); eta(L) = coefs(L,'eta'); kappa(i,j) = pairs(i,j,'kappa'); nu(i,j) = pairs(i,j,'nu'); Set arc(i,j); arc(i,j) = yes$kappa(i,j); $macro repMonop(style) rep1(i,j,"style") = t.l(i,j); rep2("supply",L,"style") = s.l(L); rep2("demand",L,"style") = d.l(L); rep2("price ",L,"style") = price.l(L); tab6("totProfit","style") = obj.l; tab6("totSupply","style") = sum{L, s.l(L)}; tab6("theta1","style") = price.l('one'); tab6("theta2","style") = price.l('two'); tab6("theta3","style") = price.l('three');